The Architecture of Living Tissue with Jean-Claude Guimberteau (LBP 059)

guimberteauToday I’m talking with Dr. Jean-Claude Guimberteau who practiced for many years as a hand surgeon specializing in microsurgical replantation and transplantation. Many of you listening know him best for his current groundbreaking work exploring and defining the movement of tissues beneath the skin using an intra-operative endoscopic camera to record living tissues, and from that to  develop concepts related to the new paradigm of biological structure in human beings. He is the author of many books including the book and DVD set, The Architecture of Human Living Fascia.

In our conversation today we talk about how he transitioned out of performing surgery and into this discovery of form. We talk about the Multimicrovacuolar Collagenous Absorbing System, or MVCAS for short, and what it has to do with form, how we are volumes, that the traditional anatomical view point of movement happening in 3 planes is incorrect, how each movement is unique, and that structurally we are an apparent, yet intelligent, chaos.  

GET IT ON ITUNES

GET IT ON STITCHER

GET IT ON  LIBSYN

Conversation highlights

  • The inspiration to film tissue endoscopically came from taking pictures in reconstructive surgery. He was initially impressed by how tendons were sliding in the connective tissue- to understand that you have to observe it you need a camera.
  • Wan not prepared to find what he found, “I found a very strange world,a  world of fibers, a world without order.
  • MVCAS used this abbreviation 15 years ago for the sliding tissue around the tendon because when you are moving your tendon, the tendon inside this part of your hand is moving but if you observe the surface of the skin of your palm it’s not moving.
  • Between the tendon and skin there is an absorbing system. When you observe it you observe fibers and between them some small vacuoles- the frame is made of collagen.
  • The MVCAS is in fact the fibular network you can find everywhere.
  • Vacuole- this term is not the best, have also thought about using areolar, but too irregular. Aveolar, also interesting. I use vaculoe because it is a small volume with apparently nothing inside.
  • I think of it as a 3 dimensional structure and it’s not made from solid material but it contains proteoglycan gel- it is responsible for our fluid volume.
  • We are volumes. If we are volumes you can’t think the structure of the body only in 3 dimensions otherwise it’s drawing on a book. You can explain how a body is organized only if you accept that we are volumes. Microvacuoles are everywhere made by the intertwining of the fibers in 3 dimensions.
  • It’s made of proteoglycan gel and it’s attracting water. You have a constant volume, so the volume is maintained. It’s adaptable. You can preserve the volume during the movement. From the mechanical point of view this behavior is interesting and for me it’s been a discovery. I was never taught about that. During the first part of my surgeon life I never imagined how it was working.
  • The traditional way of thinking about anatomy tries to explain mobility by a stratification of 3 planes. But in fact that is wrong. If you only think of the traditional anatomy description you can’t explain many things. You can’t for example explain why all these small vessels has such surprising design without any order. Why is it a sort of chaos? How will this chaos assume the perfect blood supply of an organ?
  • When people listen to the world of chaos they think it is completely no sense, but in fact if you look to say a tree try to find an order along the branches. There is no order that humans consider order. It’s a disordered pattern but it’s a tree and it’s a perfect tree. Our body is made with a similar architecture.
  • I think for the moment that biotensegrity is the only one concept able to explain how a body can resist gravity. There is no other concept able to describe it.
  • At first, what I found is not icosahedron [considered the building block of biotensegrity], I found microvacuoles which are not empty, there is glycosaminsoglycans inside the volume. In biotensegrity you never talk about what is inside the icosahedron- We talk about the frame and the tension/compression but never what is inside the volume. This why I have some nuance with the global concept of tensegrity, but I agree with it.
  • Biotensegrity is a theoretical model and I don’t think our body is made of icosahedrons, that’s wrong.
  • You have to have an understanding of the gel volumes with the glycosaminosglycans or proteoglycan gel.
  • How does the system move- sliding vs. gliding  John Sharkey and Joanne Avison  discuss the difference between glide and slide but for a Frenchman this is difficult to understand. At the beginning used gliding. Then met some American and English friends who said use sliding.
  • The mobility of the fibular frame- all these fibers are moving. When you have a movement, 3 or 4 or 10 minutes after if you think you are going to make the same movement, it is not. There is another way that fibers are going to adapt. The external factors are different, and for each movement you have a particular behavior of the fibers. Each movement is unique.
  • At 20 years old you are at optimum of tension inside your body. Little by little all these elements are decreasing slowly in quality because we are not plants to be alive for eternity. We are not as able to resist gravity as well which explains aging. It also explains scars. All the fibular harmony is completely destroyed the result is a true chaos, not an apparent chaos. All these behavior disappears and never returns. A scar is a scar for life.
  • Is it possible to get some of that glide/slide back with a manual therapy approach? Yes, but i think it’s better to hope you never lose the original state. You can largely improve and have a good result but you need time. It’s not in one instant, you need patience.
  • Now we know not to use too large incisions. Surgeries have changed so much over the last several years. It’s a surgical revolution.
  • The ideas are parallel- the body is a perfect harmony and so you use very small incisions to avoid destroying the harmony.
  • Talking about the Theil dissection coming up at Dundee University with John Sharkey and Joanne Avison- it is more difficult to do a dissection with an old cadaver. If you use a tree  cut one year before and if you use a tree still living it’s different. Our idea of anatomy has been built on cadavers, thanks to technology we can change that.

Resources

Jean-Claude Guimberteau’s website

Book + DVD: The Architecture of Human Living Architecture

Paper: The role and mechanical behavior of the connective tissue in tendon sliding

Stephen Levin on biotensegrity

Joanne Avison on biotensegrity

John Sharkey on biotensegrity and glide vs. slide

The Dundee University biotensegrity dissection

If you’re inspired to support the show, you can do that here. You can also leave a review on iTunes or Stitcher  or simply tell your favorite body nerds about the show. It keeps the show rolling and connects us more as a community. Body nerds unite!

 

 

Add a comment

Tags: , , , , , ,

No comments yet.

Leave a Reply

Or