The Architecture of Living Tissue with Jean-Claude Guimberteau (LBP 059)

guimberteau
guimberteau

Today I’m talking with Dr. Jean-Claude Guimberteau who practiced for many years as a hand surgeon specializing in microsurgical replantation and transplantation. Many of you listening know him best for his current groundbreaking work exploring and defining the movement of tissues beneath the skin using an intra-operative endoscopic camera to record living tissues, and from that to  develop concepts related to the new paradigm of biological structure in human beings. He is the author of many books including the book and DVD set, The Architecture of Human Living Fascia.

In our conversation today we talk about how he transitioned out of performing surgery and into this discovery of form. We talk about the Multimicrovacuolar Collagenous Absorbing System, or MVCAS for short, and what it has to do with form, how we are volumes, that the traditional anatomical view point of movement happening in 3 planes is incorrect, how each movement is unique, and that structurally we are an apparent, yet intelligent, chaos.  

GET IT ON ITUNES

GET IT ON STITCHER

GET IT ON  LIBSYN

Conversation highlights

  • The inspiration to film tissue endoscopically came from taking pictures in reconstructive surgery. He was initially impressed by how tendons were sliding in the connective tissue- to understand that you have to observe it you need a camera.
  • Wan not prepared to find what he found, "I found a very strange world,a  world of fibers, a world without order.
  • MVCAS used this abbreviation 15 years ago for the sliding tissue around the tendon because when you are moving your tendon, the tendon inside this part of your hand is moving but if you observe the surface of the skin of your palm it’s not moving.
  • Between the tendon and skin there is an absorbing system. When you observe it you observe fibers and between them some small vacuoles- the frame is made of collagen.
  • The MVCAS is in fact the fibular network you can find everywhere.
  • Vacuole- this term is not the best, have also thought about using areolar, but too irregular. Aveolar, also interesting. I use vaculoe because it is a small volume with apparently nothing inside.
  • I think of it as a 3 dimensional structure and it’s not made from solid material but it contains proteoglycan gel- it is responsible for our fluid volume.
  • We are volumes. If we are volumes you can’t think the structure of the body only in 3 dimensions otherwise it’s drawing on a book. You can explain how a body is organized only if you accept that we are volumes. Microvacuoles are everywhere made by the intertwining of the fibers in 3 dimensions.
  • It’s made of proteoglycan gel and it’s attracting water. You have a constant volume, so the volume is maintained. It’s adaptable. You can preserve the volume during the movement. From the mechanical point of view this behavior is interesting and for me it’s been a discovery. I was never taught about that. During the first part of my surgeon life I never imagined how it was working.
  • The traditional way of thinking about anatomy tries to explain mobility by a stratification of 3 planes. But in fact that is wrong. If you only think of the traditional anatomy description you can’t explain many things. You can’t for example explain why all these small vessels has such surprising design without any order. Why is it a sort of chaos? How will this chaos assume the perfect blood supply of an organ?
  • When people listen to the world of chaos they think it is completely no sense, but in fact if you look to say a tree try to find an order along the branches. There is no order that humans consider order. It’s a disordered pattern but it’s a tree and it’s a perfect tree. Our body is made with a similar architecture.
  • I think for the moment that biotensegrity is the only one concept able to explain how a body can resist gravity. There is no other concept able to describe it.
  • At first, what I found is not icosahedron [considered the building block of biotensegrity], I found microvacuoles which are not empty, there is glycosaminsoglycans inside the volume. In biotensegrity you never talk about what is inside the icosahedron- We talk about the frame and the tension/compression but never what is inside the volume. This why I have some nuance with the global concept of tensegrity, but I agree with it.
  • Biotensegrity is a theoretical model and I don’t think our body is made of icosahedrons, that’s wrong.
  • You have to have an understanding of the gel volumes with the glycosaminosglycans or proteoglycan gel.
  • How does the system move- sliding vs. gliding  John Sharkey and Joanne Avison  discuss the difference between glide and slide but for a Frenchman this is difficult to understand. At the beginning used gliding. Then met some American and English friends who said use sliding.
  • The mobility of the fibular frame- all these fibers are moving. When you have a movement, 3 or 4 or 10 minutes after if you think you are going to make the same movement, it is not. There is another way that fibers are going to adapt. The external factors are different, and for each movement you have a particular behavior of the fibers. Each movement is unique.
  • At 20 years old you are at optimum of tension inside your body. Little by little all these elements are decreasing slowly in quality because we are not plants to be alive for eternity. We are not as able to resist gravity as well which explains aging. It also explains scars. All the fibular harmony is completely destroyed the result is a true chaos, not an apparent chaos. All these behavior disappears and never returns. A scar is a scar for life.
  • Is it possible to get some of that glide/slide back with a manual therapy approach? Yes, but i think it’s better to hope you never lose the original state. You can largely improve and have a good result but you need time. It’s not in one instant, you need patience.
  • Now we know not to use too large incisions. Surgeries have changed so much over the last several years. It’s a surgical revolution.
  • The ideas are parallel- the body is a perfect harmony and so you use very small incisions to avoid destroying the harmony.
  • Talking about the Theil dissection coming up at Dundee University with John Sharkey and Joanne Avison- it is more difficult to do a dissection with an old cadaver. If you use a tree  cut one year before and if you use a tree still living it’s different. Our idea of anatomy has been built on cadavers, thanks to technology we can change that.

Resources

Jean-Claude Guimberteau's website

Book + DVD: The Architecture of Human Living Architecture

Paper: The role and mechanical behavior of the connective tissue in tendon sliding

Stephen Levin on biotensegrity

Joanne Avison on biotensegrity

John Sharkey on biotensegrity and glide vs. slide

The Dundee University biotensegrity dissection

If you’re inspired to support the show, you can do that here. You can also leave a review on iTunes or Stitcher  or simply tell your favorite body nerds about the show. It keeps the show rolling and connects us more as a community. Body nerds unite!

A New Paradigm of Anatomy with John Sharkey (LBP 055)

In this episode I am talking with John Sharkey who is a Clinical Anatomist, Exercise Physiologist, and European Neuromuscular Therapist. He has developed the worlds only Masters Degree in Neuromuscular Therapy which is Accredited by the University of Chester, he is on the editorial board for the Journal of Bodywork and Movement Therapies, the International Journal of Osteopathy, and the International Journal of Therapeutic Massage and Bodywork. He is also a member of the Olympic Councils medical Team and a founding member of the B.I.G, otherwise known as the Biotensegrity Interest Group. He has also authored several books including the 3rd edition of The Concise Book of Muscles which we talk about in the interview.

John and I are talking here in great depth about the old paradigm of anatomy and biomechanics and what the new paradigm holds. This is critical stuff here. We are on the brink of a new understanding of the living human body and it’s time to look at the old models, where they come from, and why they are outdated. So if you’re interested in living tissue vs. cadavers, biotensegrity vs. biomechanics, continuity of form vs. origin insertion, and how individual human anatomy is and what that changes about our often dogmatic approaches to the body this episode is for you.

GET IT ON ITUNES

GET IT ON STITCHER

GET IT ON LIBSYN

Conversation highlights

  • What is a clinical anatomist?
  • For a long time there was a big gap between the medical field and massage therapy. He made the decision that physiology and anatomy were gong to be the foundations that he was built on.
  • Alma mater is Dundee University in Scotland. The clinical anatomy department there was within the department of anatomy and human identification so it was a broad speciality.
  • Clinical anatomy is all about "where". Where is the phrenic nerve? Where is the... and not just where, but what is its path? What structures lie close to it? This informs surgeons as to where the nerves are and in what percentage of population would you find it 1cm lateral or medial etc. Anatomists feed on technicalities, detail, and specificity.
  • Me: If clinical anatomy is about where and about knowing the names of structures then it is steeped initially in the old paradigm. Yet you are also a champion for the new paradigm. Do you agree with terms old/new paradigm and how would you differentiate them?
  • His work with Dr. Stephen Levin who was investigating the biotensegrity model.
  • When studying anatomy, new students are given a textbook like Grey’s, they open it up and will tell them how to carry out a dissection. They will follow the dissection descriptions the same way previous students carried it out the same way students previous to them carried it out and on and on... from that viewpoint dissection always the same.
  • We also want to get through the skin and get to the structures that matter the most like the nerves, blood vessels, and viscera. This is the focus of parts and the language of parts. John wanted to explore the language of wholes and appreciate the relationships and continuities.
  • John's work with Dr. Levin's BIG (Biotensegrity Interest Group).
  • Definition of biotensegrity in his terms.
  • To give a visual people will often use the Skwish toy made by the Manhattan Toy Company. However we are not made of wooden struts and elastic bands.
  • Words are hugely important. Human tissue is not supposed to be stretched. It does not stretch.
  • Once tissues in the pelvis have stretched they will not return to their former state. There are many people who will spend hours stretching- gymnasts for example. How are they achieving this new range of motion? We don’t want to take the origin and insertion further away, so we are changing the tissues that lie between them.
  • Also doesn’t like the term sliding. Many people use that term. However place one hand on top of the other and move your hands back and forth. Feel the heat which is the consequence of friction. This is not a good way to build a body. In living architecture tissues do not slide, they glide relative to each other. Guimberteau’s videos demonstrate that beautifully.
  • We talk about stretching in a Newtownian way. If we take the Newtowninan tube- for example the heart or blood vessels- the tube would lengthen and it would expand under pressure and with all the pressure the blood vessels of the brain should also expand and would squeeze the brain out of the ears. And that doesn’t happen because of non-linearlity.
  • Language has to evolve alongside our models as they evolve.
  • We’re getting a very antiseptic view of the human body. However let's not throw out the baby with the bathwater. He loves the history of anatomy.
  • The icosehderon as the building block of biotensegrity. We will never get to see that because the icoshedron is a 3 dimensional version of a 4th dimensional thing.
  • We have a right eye and a left eye. All the visual information you take in that goes to the brain will cause the brain some problems because the images from the 2 sides do not correct, and the brain fills in gaps. At best we see in 2.5D, but tensegrity icosehedrons happens in 4D. Like a mobius strip- there is no inside or outside but only continuity- that is what living architecture is like.
  • We need to recognize that what we are dealing with requires soft matter physics. This will give us the mathematical models that will provide us with computer graphics to help us to explain the multidimensional dynamics. 
  • It's amazing to me that we are still working on the idea that the body is a lever based system. In an x-ray we can see there is space between those bones. Why are the bones not crushing each other? People have this notion that there must be a lot of fluid in the knee joint. However if you lick your hand- that’s how much fluid is in the knee joint.So what is keeping the integrity of that joint space?
  • People like Serge Gracovetsky have demonstrated that to do a deadlift it would have to demonstrate so much intra abdominal pressure that they would explode.
  • Bone is soft matter- it is all it is is a continuation of the fascia.
  • Me: You recently co-authored 3rd edition Concise Book of Muscles. What was the approach to building bridges between new and old paradigms in that book?
  • Change takes time. Origin and insertion type of detail is important for med students. However, the other aspect is introducing a section co-authored with Dr. Stephen Levin to introduce biotensegrity for a new anatomy of the 21st century. In the next 10 to 15 years the 6th and 7th editions will look very different.
  • Working with cadavers treated with formaldehyde changes the texture and color- everything looks same.
  • Once you make an incision to skin and allow atmospheric air to touch what is beneath the skin you will begin to see changes taking place. From that viewpoint if someone takes a tissue out of the body and investigates it what you are actually witnessing are emergent properties. You have to see it in situ.
  • Jean Claude Guimberteau could do what no university would allow. He got permission from patients to place a camera under their skin. For the first time in history we have recorded images of our connective tissue in living tissue. It has blown people away.
  • This is the type of evidence that demonstrates to people that you cannot stretch tissues. Tissues glide relative to each other. In fact in Dundee we are going to bring in an endoscope and use it on the Thiel cadavers. The cadavers hold on to original colors, fluids move, lungs inflate and deflate. It is as close to being a surgeon as possible. However there is no life in the tissue.
  • Aliveness changes so much which is why Guimberteau’s films are so important.
  • Individuality is the norm of human anatomy.
  • Every bone is a sesamoid bone.
  • Anatomists have discovered a new muscle in the quadriceps- not sure what we're going to call the quadriceps group now...
  • In the dissection room students will take out boxes of femurs and pelvises and they will measure them. When they come back they will find none of the measurements are similar in any of the bones. This tells you that there is no one squat that fits all. You have to work with people as individuals.
  • There is nothing perfect in human anatomy or neurology.
  • The real motors for movement in shoulder come from lower limbs. So many people who train things in isolation do it for purely for cosmetic reasons. If you think of it in terms of chains and links you have this massive link with no relationship to the entire chain. Now it produces forces out of sync with the entire chain.
  • Our strengths used to be dictated by needing to climb a tree or over rocks. We didn’t have a fitness center where we could put our legs in a leg press and disassociate these structures and ask them to repeatedly contract. When we do this we are teaching the body new neuromuscular anagrams and losing the connection between the whole body.
  • People should be informed. Once people understand the ramifications they can make an informed choice.
  • Children involved in sports and demanding activities will have long term ramifications to their adult form.

Resources

John Sharkey's website

Upcoming event pre-conference day of the British Fascia Symposium

Upcoming event Dundee University Biotensegrity dissection

Dr. Stephen Levin 

My interview with Dr. Stephen Levin

Skwish Toy

Dr. Jean-Claude Guimberteau

Serge Gracovetsky

Concise Book of Muscles 3rd Edition

If you’re inspired to support the show, you can do that here. You can also leave a review on iTunes or Stitcher  , or simply tell your favorite body nerds about the show. It keeps the show rolling and connects us more as a community. Body nerds unite!

Gil Hedley: Exploring Inner Space (LBP 031)

I have long admired the work of Gil Hedley who is the founder of Integral Anatomy and Somanautics Workshops. For those unacquainted, Gil Hedley is an ethicist and anatomist who runs unique human dissection labs. They are (very) unique in the field of anatomy in  that they are about discovering the reality of our connectedness, rather than about finding the separations between things. We talk about this viewpoint and what it changes,  how our model of the body determines our relationship with it, the superficial fascia and why everyone is either ignoring it or hating on it, different tissue layers as different kinds of antenna of the body, insights into the famous “fuzz speech” (in the resources below if you've never seen it) and more.

GET IT ON ITUNES

GET IT ON STITCHER

GET IT ON LIBSYN

Show notes

Brooke: Can you define what integral anatomy is?

Gil:  Integral anatomy is my way of describing a field of study, or of naming a field of study. I use the word anatomy very broadly, and that's what integral earns me. I put integral in front of anatomy and I get this whole world that I can play in beyond what folks normally consider when they use the word anatomy, which of course means to cut up with a knife. I do some cutting up with a knife, but my approach to anatomy, the intention is not to anatomize things for the purpose of naming bits, or establishing mechanics. My entire reason for cutting things up with a knife, or anatomizing is to put myself together, and to help other folks have a more integrated experience of themselves.

I do find that the study of anatomy does bring us into a much deeper understanding of ourselves if we'll let it. I was trained as an ethicist, and if I bring my ethics background to the study of anatomy, I find myself wanting to ask questions of the body of how I might live, as opposed to me showing up and telling the body what it is, and what I'm going to make it do.

Brooke: What are other parts of your background that have brought you to this fascination with the human body, but in this particular way?

Gil:  Like most people my keenest interest in the body sparked by the pain in the ass that it has been to me. So many people are in pain, and so they start studying the body, and I'm not different from that. I took an interest in my body very early on, and started lifting weights, and doing all kinds of wonderful damage to myself as an ignorant teenaged, 1970s weight lifter. However, that did bring me into an experience of my body, and I have a very transparent anatomy. At 13 years old standing in front of the mirror, I was like, "Shazam. Look at all them muscles. What are they all about?"

My ethics background, basically I went to college and learned how to read, which was helpful. Then graduate school ultimately. It was there that I took my study of the body past weight lifting into things like Tai Chi, and massage, and ultimately Rolfing, and then healing work. I'm a very head oriented kind of guy, and I found that practicing Tai Chi, and studying massage is very grounding. I took that desire to be embodied further through my study of dissection.

Brooke: You've created one of my favorite words of all time, somanaut. Can you define what that word means?

Gil: The word breaks down nicely. Soma is the body in Greek, but richly understood because there's also sarks which in Greek simply means flesh. Soma is maybe a richer understanding of the body, or a broader conception of form. Then naut would be the same root for sailor, or sailing, or to navigate that we have. The astronaut navigates the outer space, and sails about in outer space, and the somanaut then is the one who navigates the inner space of the human form. I made up the word basically to describe the wonderful healer, and shaman, and dancer Emilie Conrad who developed Continuum Movement, and many years ago when I was editor of the Rolf Lines Journal at the Rolf Institute, I interviewed Emilie, and to make an article for that. The only way I could describe that woman was to make up a word, because she was absolutely original.

I described her as a somanaut in that article, and that was maybe 22 years ago, or something. Ever since then I realized, "Oh, maybe I'm a somanaut too. Maybe all of us who are curious to explore the inner space of the bodies are somanauts." and it kind of caught on.

Brooke: You pointed out that regional anatomy is really about naming, which I think is so fascinating, because it's a distinction that's rarely talked about. Oftentimes I think we've believed that anatomy means understanding the human body.

Gil:  I haven't seen a whole lot of that going on.

Yeah, anatomy ... It would be wonderful if it were about understanding the body, and developing a relationship with it. But it tends to be more like if you can't come up with that Latin word in the right amount of seconds while someone is tapping their foot, and you're filling out little dots on a form- that tends to be what the words are used for. For testing, and professional trainings, or schooling situations. I feel that for anatomy to be a process of understanding, it needs to be an experience, and the words if we're going to use them should evoke experiences. The only way for that to happen is to connect with those tissues that are named in a way much more deeper than the flinging of intellectual vocabulary words.

Thankfully there are many who've plowed this field before me. People like Emilie, or Bonnie Banebridge Cohen, or Tom Myers, and ... I'm trying to think of, "Taking Root to Fly"- Irene Dowd. Irene, and Bonnie, and Emily all long precede me, and are inspirational to many. Just consider me a recent loud mouth.

Brooke: You've said that our model of the body that we're mostly functioning from, that it's determining our behavior towards our body. How so do you think?

Gil: The thing is that anatomy is generally understood as this naming of things based on the cutting up of them, generates a very abstract set of information and categories. I literally mean abstract meaning the levels of tissue have been drawn away from other levels of tissue. Abstraho literally means to draw away from, so we draw one thing away from another, and then we feed the thing that's left and develop a mental conception of it. Every time you approach a body with an idea, and then execute that idea with a knife, you're making up anatomy, because there is no thing as a liver on a tray. There is not such as a skin unto itself, except through a process of dissection, and abstraction. Those aren't realities. The reality is this whole flesh and blood pulsing experience that we're all wondering around with.

Then we get our abstraction built, and then we say, "Oh, okay. There's this muscle, rectus femoris, there this muscle adductor magnus, there's this thing in our chest, the heart, and that's a pump. The other one abducts and the other one adducts. We have all of these very abstract, conceptions. Then we approach with our techniques people, and we see them move, and we have that set of abstractions in our brain, and we say, "Well." It's like a math problem, and we add it up, and say, "Well, this should be doing that because of what they're doing there. Then we apply our abstraction to the form, and try and make it emulate what our abstractions tell us it should be instead of taking in a given whole set of compensations and helping it to function better.

Rectus femoris doesn't exist except as a mental construct, but in fact our human function is always a function of the whole.

Even my layered approach to anatomy is just a set of abstractions, which with the help of the folks who come to my class, I break down my model as I teach it, so as not to believe it too much, because it's just a way of getting in. The actual functional person is always a gestalt of all the systems, and all of the hopes and dreams, and all of the life processes, and all of the trillions of cells streaming. In other words, that's what's happening in front of you, not, "Oh, we're having difficulty abducting our x, y, z." Which would be cured by strengthening the a, b, c. I don't think we work that way.

Brooke: Yeah, for me one of the things that I'm most excited about ... I did an interview recently where somebody asked me, "What are you most excited about all of the current research into fascia?", and the honest truth is my most idealistic self would like to believe that maybe if we're approaching the body in this much more unified, whole way, maybe it can change culture eventually. Maybe we'll start to see ourselves as more unified.

Gil: I hope so. That was certainly Ida Rolf's goal. I don't think I've fallen too far from the Rolfian tree in my aspirations along with you to transform culture. She was looking to cultivate a more mature human being, and I feel that I'm wanting to do the same, at least for my part. I feel that part of that maturity lies in an acceptance and learning from the body. I may not carry an ideal of the body the way that maybe Ida Rolf did, like it should be this way, and then if it were, then that would be great. I don't have so much of an ideal. One thing I'm certain of at this point is that their ain't no single representation of human anatomy. Each one of us is an absolutely, 100% perfect representation of human anatomy. Not like you got it right, and I didn't.

In other words, that's another element of integral anatomy is to shift the focus from the idealization, and the consequent idealistic representation of the body as the point of reference for anatomy, and shift the point of reference for anatomy to the specific, to the individual, to the most basic living individual representation of it. Also, to spread the conception of the body much larger then that which is contained in our skin. You go to a lab and you see a dead human form, and you're like, "There's a lot missing there."And so what all that other stuff is to me is also deserving of our attention, and our anatomical inquiry, because we really don't know how that stuff on the table will ever work without considering the emotional life ors the spiritual aspiration, or the intellectual constructs, or the religious beliefs, or the cultural underpinnings. It does involve a culture shift to understand the body differently. This culture's got some serious opinions about the body-

I think the study of anatomy can challenge that. As an ethicist I was writing on family ethics, and stuff like that. A lot of considerations of the body were involved, and a lot of rules for embodied folks were being written without much consideration of the actual knowledge of the body, or experience of it. It's like how would our ethics change, not to mention our culture. How would our ethics change if they were informed by the truth of human experience as we might perceive it through the study of integral anatomy?

Brooke: You are particularly well versed in a tissue that has gotten totally ignored in most spheres, which is the superficial fascia. What is your fascination with the superficial fascia?

Gil: Well, it's there, but it wasn't in my book, so what the heck? I took the pre-training at the Rolf Institute, because as an academic, I didn't have that massage background, and Tom Myers had written this pre-training for the Rolf's Institute back in the late 80s, and early 90s when I was there. That was when I first was exposed to this very idea of superficial fascia, and I didn't have much of it. Still don't, but we did this layered meditation kind of experience with a partner to feel into the different layers, and that made a huge impression on me. When I went out eventually, a couple years later as a Rolfer and found myself noodling around in the body, I wanted to see that, and other things. I went to the lab, and it made a big impression on me, because it freaked me out.

I didn't have an instant love affair with superficial fascia. It was more like a total fear and loathing. I thought, "Well, that's interesting Gil. What's all that about?" It was extremely provocative and challenging to me to face my own cultural baggage that I carried with respect to that, and my own personal relationship to my body, and what it might mean. It took a lot of nightmarish self-work to come to what I would consider to be a much more mature, and loving, and accepting relationship with superficial fascia, so much so that I could help others to really love that tissue, and love themselves wearing it, because it is our anatomy. It is the fact. It is massage therapists touch. It's what every Rolfer works through.

When you look at a muscle chart at every school in the country, and that's suppose to represent human anatomy, and its so far from the reality. Again, it's a very crazy level of abstraction. I wonder to myself, "Well, why do we prefer that? It's all human tissue. It's all part of the whole, so why does one get preferred to another?" It gets into the culture critique, and what have we done to our self in the process of abstraction to alienate our self from certain tissue textures, and accept other ones, or to give preference to certain mechanical relationships, and to dismiss, or ignore other mechanical relationships. Even the mechanistic approach itself has within it strong preferences for one tissue relationship over another. You have to do culture critique to actually embrace the whole body. My comfort did not come easily.

Brooke: What are some of the gifts that our adipose tissue gives us that we miss sense we've decided it's a bad tissue to have too much of in our culture? I'm sure there's a long list.

Gil:Our superficial fascia is this sort of glowing leaf that we all wear, and it's a sensual, slippery slope, it's an emotional ride, it's part of our sexuality and our sensuality. I would go so far as to say it's part of how we listen to our world. It's a kind of antennae that we pick up information of a certain type. In other words, texture has specific structure, and therefore specific tone. We can go very far into it. Superficial fascia is an endocrine organ. It's an organ of metabolism. We could go on with it's many different features, but that's only because I've come to notice and accept it as this thing that we all have. It belongs there.

We're depleted without it. If you consider also this is the place where a baby rests on it's mother's breast, and nurses there, that this is part of the layer as well. When we refuse it, or curse it, and hate it, we hate all that it brings to us as well, and separate ourselves from that comfort, from that sensuality, from the ministry of the superficial fascia to our personalities in a life. We put ourselves away from our self when we hold up to brutal criticism, a tissue. Some day down the road maybe we'll hate muscle the way we hate superficial fascia now, and it'll reverse. We didn't always hate it. It's a new thing to hate that tissue.

It's a very American movie culture thing to hate that tissue. Before the movies, a beautiful woman was portrayed as fleshy. You can look at the arc, the curve of decline of appreciation for a tissue over a century, or less. Really less than a century. Near 60-70 years where we've started to put that aside. I'm trying to rehabilitate a little bit. I'm putting a little energy into rehabilitating our cultural connection to it by helping people see what it is.  Can the hand say to the foot, "I don't need you."? Can the mouth say to the superficial fascia, "I don't need you."?  We do need you, but in my mind the only way to create a revision of the connection is through appreciation, and it's very hard to appreciate something if you keep chopping it up, and throwing it in a bucket, or if you refuse to draw it, if if you refuse to give it a chapter in your book.

If it doesn't even rank a chapter, then how can anyone ever have any regard for it? I'm giving folks a visual connection, and then maybe a whole bunch of people will do me the favor of adding chapters to their books that acknowledge this tissue. How can you be a massage therapist touching people all day, and not have spent a couple of weeks in your training connecting to this tissue as opposed to this bodily prioritized muscle layer.

Brooke: I love this idea of it being an antennae of sorts for receiving a certain kind of information. That's going to be on my mind for a long time now after this interview.

Gil: I personally see each texture of our body as having a quality of an antennae. I mean it very specifically as a transducer of signals from one kind to another, like a radio antennae transduces the radio waves into an electrical wave. Our eyes transduce visible light spectrum frequencies into neural impulses. Our ears, we transduce warping of the air into frequencies. Similarly, all the impressions made upon our body are transduced by the different tissues, and delivered different kinds of information into the whole system that we are.

Brooke: What are some of the ways that the superficial fascia differs from the fascia profundus, or the deep fascia?

Gil: Well, it's all squishy and yellow for starters, and it changes it's dimension very much so over the course of a life. Different parts of your life cycle, and in different areas of your body. The superficial fascia is interesting. It's a loose areolar connective tissue with variable adipocytes deposition. Adipocytes are connective tissue cells. Folks don't really know that for the most part, but an adipocyte is a connective tissue cell. In the deep fascia, we don't have that. It's more of a dense material.

We could get into fascia definitions, and category charts all day long, but for the most part, superficial fascia, I would call it a fluffy layer, and deep fascia, I would call it a thin layer. We have an alternating sequence of thin, and fluffy layers in our body. Skin is thin, and superficial fascia's fluffy, and deep fascia's thin. Maybe we could look at their relationship as one of like insulative, and conductive. Maybe that the superficial fascia is an insulator of the conductive properties of the deep fascia. That's one way to hold it in your head. In structural terms the superficial fascia is movement, and the deep fascia is stability.

The superficial fascia moves relative to the stable deep fascia. The muscle tissue is also a fluffy layer. We went to thin skin, to superficial fascia, to deep fascia thin, to muscle fluffy. We have to fluffy layers, muscle and superficial fascia sliding relative to the somewhat fixed deep fascia. They have very different functional properties in our body. They're both contractile. I know folks have gotten a lot of sense of the contractility of the deep fascia from Robert's [Schleip] research and his company, and friends. Superficial fascia also is a highly contractile tissue, perhaps more so than the deep fascia, and the superficial fascia. We know in wound healing if you slash your body with a knife, the superficial fascia will pulse, and contract to close the wound. It's really ... It's alive.

Anyway, that's just a few snippets. I could go on-

Brooke:You did a talk a while back that really got around. Did it's viral thing on YouTube called the "Fuzz Speech." Personally, I love the "Fuzz Speech," I have heard that you have come to clarify some of the concepts in that talk. I was wondering if I have a chance to talk with you here, if you can speak to what you would change about that discussion now?

Gil: I pretty much stand by what I said in the "Fuzz Speech," although I don't feel that visually I represented it in the least confusing way possible.  That's partly because 10 years ago, or when I made that, it represented the culmination of 10 years of thinking, and experience that needed another 10 years of maturing to make more sense. As a Rolfer I was told that the muscles should glide, so when I touched somebody I was hoping to facilitate the silk stocking gliding between the gastrocnemius, and the soleus when I was working on someone's leg.

In my mind, "silk stockings" were independent things, and didn't have any actual relationship. Here's a stocking, and here's a stocking, and they're sliding against each other. When I got into the body and started doing anatomy, it was like, hey, these things are connected. There's fuzzy stuff in between the gastroc, and soleus. Does that belong there? I didn't see it drawn in Netter. I didn't know what it was, so I called it fuzz. I was like the bodies are full of fuzz! I speculated about that for a long time. What is this stuff, and does it belong there? Do some people have more of it? Some people have less or it? Does it inhibit movement? Is that what I'm trying to get rid of? Should my hand be obliterating that when I'm working on a client because it doesn't belong there? But it seems to be everywhere. Maybe it's some kind of an artifact of the lack of movement? There is some truth in that in that we can have a tissue agglomeration. Sticking together of tissues. Tom [Myers] had taught us back in that initial training that there's hydrogen bonding going on in our tissues at night, and that would increase our inner stickiness. I pieced together the idea of that along with the fuzz that I was seeing, and came up with my theory of the fuzz. What I would change is my now knowledge that, that tissue is anatomical, it does belong there.

It never was my job as a Rolfer to make it go away. What is my job is to facilitate the level at which a tissue that's all about movement helps you move. If you are frozen, or stuck in that tissue which facilitates movement, then the play in the tissue can be enhanced through movements and touch, which really is a kind of movement. What I would change is the visuals and say, "Our job isn't to make the fuzz go away. Our job is to facilitate the quality of the tissue so that's it's hydrated, and so that it has optimal play." That, what I call, filmy fascia now. Filmy fascia is in between any tissue that moves relative to the other tissue.

Superficial fascia can slide a bit over deep fascia. It does so because they have a filmy relationship at certain points. Similarly muscle tissue isn't only fixed into deep fascia with say, septa, but with what I would call filmy fascia. Now, if I'm taking the body apart, we're going to call filmy fascia fuzz, because it looks like cotton candy, but if you lay it back down, it looks like a film again, and that film is the principle of movement in our bodies. Fuzz permits movement. On the dark side, it can also limit movement. If it's inhibited, it glides, it's through dehydration, or through scarring, or through adhesion, then it becomes a limitation on movement, and we need to melt it.

In the viscera, every word I'll stand by in my fuzz speech, because in a viscera you have tissues like say a stomach to a small intestine, they have greasy sliding relationship, and if see a fixation here that's non-anatomical, then I'm saying, "Hey, that's an adhesion. That's a pathological fascial relationship relatively speaking." It might not cause a whole lot of trouble, or maybe it will, but in either way it's not standard issue anatomy. It's a fixation that subsequent to inflammation, scarring, injury, surgery, whatever.

I can see those aberrant relationships with my eyeballs when I do dissection of the viscera, but when I'm dissecting muscle tissue, I can't at any point say, "Hey. There's too much fuzz here," because it's already connected, so I'm not in a position to evaluate the quality of the relationship of tissues that already have a filmy, gliding relationship in the cadaver. I can see it in the living though. In other words, if I'm evaluating tissue movement with my hands, or with my eyes, I can say, "That ain't moving there," and then facilitate the movement. In the dissection process I can't really say, "Hey, there's too much filmy fascia between these two things," although I have ... You can read up surgeons, and whatever who will confirm the kind of thing I say with respect to the tissues I say it about in the "Fuzz Speech," that it gets agglomerated basically. It gets solid.

The deception that carries forward in the "Fuzz Speech", and I feel bad about this, sometimes people think, "I should get rid of my fuzz" , and it's just one more thing on themselves to hate. Now, there's also many thousands of people who've told me, "You inspired me to move," and then I'm jumping for joy and clicking my heels, and that's why I don't take it down. I think I've inspired more movement then self hatred with with the "Fuzz Speech", and I'm going to run with that.

Brooke:I believe you have. We'll make t-shirts that say, "Love Your Fuzz and All Will Be Well," When I was at the Rolf Institute we did a 5 hour dissection lab with a medical student in Denver at the teaching hospital. We were basically working with this medical student who got stuck taking the body workers through a 5 hour tour of a cadavear already cut up via med student specs. He was stuck with us for the day, and there was really this glibness in his attitude. This real intentional disregard for the human being on the table by the med student. A lot of us, being sensitive Rolfer types, I think we felt really uncomfortable and irritated quite frankly by this guy.He really had this very intentional way of taking advantage of this person who donated their body to science for us to learn. I know you create a very different atmosphere in your dissection labs, and I was wondering if you could speak to that a bit.

Gil: The atmosphere that I create is very much based on a similar negative experience that I had. When I was as senior in high school, and in the advanced biology class for AP Bio, or whatever, back 100 years ago, our teacher took us to a school in New York City, and we were brought down to the anatomy lab. I tell you, the fellow might as well have been John Belushi who took us through this cadaver lab. He was glib, and disrespectful to us I would say, not only the cadaver. He was trying to get a charge. He was playing with the charge of it. Instead of serving us, he was playing with us. I found it offensive and didn't eat chicken for 2 years. I thought to myself, well, when you enter a laboratory you literally go into an altered state. It's no time to mess with people.

That's your big chance to serve them. When a person is brought into a state of tremendous vulnerability, how will you act in their regard under those circumstances? That's the guiding principle for me. It's like, "Okay. I've got a bunch of people in altered state here, I'm going to be a little bit careful, and try and serve their interests. This is no time to trick them into voting for my candidate, or to provoke them, or traumatize them. This is not a hazing." I'll only say, with regard to whoever took you through that experience that it represents a certain maturity level that your group exceeded. Some other groups he might have done that for, and they all would have laughed along with it as a quirky yada yada, but when you're trying to cultivate regard instead of disregard, then there has to be a whole other kind of approach.

This isn't to say that I don't have fun in my class. We have a blast, but the fun that I have tends to be at my expense rather than the donors. I'm a donor family. My uncles body, and my father's body I gave to medical establishments, and I know what it's like to have offered a family members body up for study. Believe me, it's not that I don't hope that people didn't laugh when they were working on my father's body. I hope they laughed and had a good time, and made as many jokes about his giant testicle as we did, but that having been said, it was done in good spirit.

Not at his expense, but in the love play. You know what I'm saying? It's a fine line to be walked when you're in a lab, and given that my intention is to cultivate self-appreciation, and inner connection, I do try to take advantage of that altered state in a best a way as I can.

Brooke: You're in the midst of a big project related to a recent 3 week dissection that you held. Can you talk a little bit about that, and what might be coming up for people.

Gil: I stated my intention publicly to produce the atlas of integral anatomy. Now what that means to me, and what that means when people hear the words, are probably very different things, because there's conventions around the word "atlas", and "anatomy" that may lead people to believe it would be a certain thing, but I'm imagining a more multi-genre effort. My first efforts toward producing anything called integral anatomy ended up yielding a book called, "Reconceiving my Body," that's many years old now, then I was like, "Okay. I'm going to do this. I'm going to do integral anatomy." Then it didn't turn into a book, it turned into a DVD series, and that was a multi year project.

Now I have 6 books, and a DVD series, and I still don't have the atlas of integral anatomy. I thought, okay, well I'm going to run these 3 week dissections then I'm going to collect incredible stuff towards that. I absolutely had an unbelievably powerful learning experience doing that, but because I am compelled to teach, I spent more time teaching then recording in both of the sessions.What I found myself doing presently, and I'm working day and night on it, I swear to you, is a subscriber site into which I'm going to put all my content, and I'm going to build what I call, "Atlas Galleries."

The atlas galleries will consist of something like this, an image, and then so there's an image right? Then the image will have accompanying with it some explanatory video. You'll see an image, you'll get me explaining the image, maybe some audio of that, maybe some textual accompaniment, maybe a set of references, maybe what other people think about it. Each gallery entry will be a little lesson, a story that can be gone into as deeply as the interested party wants to, and that it will connect to different learning styles so a person can listen to something, or watch something, or do something with regard to the entry, as opposed to a regular regional anatomy atlas where there's a picture, and then a bunch of lines, and then a bunch of typed words with names of things.

Again, I'm not so much interested in naming things as exploring relationships, as exploring continuities, and connections of that thing. Helping not to separate that out in someone's mind, so that they can spot a liver when they see one, but rather to help there to be so many roads going into it that you can go there if you choose to. They'll be maybe this abstract thing, but then I'm hoping to provide many paths into it, and many paths out from it so that it becomes the truly contextual related reality that we are living with more so. Then my idea is that after several years of building these atlas galleries, and adding video, and basically putting my entire professional archive online, which is what I'm going to do ...

Everything that I've ever shot, and everything I've ever snapped a picture of is going to go into this site, and be nicely sorted over time, and then my idea is to go backwards from that, and produce "The Atlas of Integral Anatomy," so that I'll pick and chose from those presentations something that could be textualized, put into a book, and then there would be a very intimate connection between the atlas itself, and the website. They would be mutually supportive, and inter-functional learning resources.

Brooke: Sounds amazing. Consider me in the proverbial line with everyone else waiting for that. Sounds great.

Gil: The site I'm going to open soon actually-In a couple of months. Basically, the content initially will consist of- I'm just going to put my 1 day workshop that I filmed a couple of years ago in Los Angeles, I'm going to have that whole thing there available for viewing, and I'm going to have a course option, so you could potentially get credit for watching that, or for watching my integral anatomy series. Then I will get the gallery opened with a couple of entries and continually add video, and topics. I have so many things that I want to build into this thing over time, that really could be a project going forward for many years. I'll build a very rich learning resource hopefully. If I don't, well you can all say, "He had a big mouth."

Brooke:            I doubt we'll say that. Just to wrap it up I always like to ask all the amazing people I get to talk to, is there anything you're currently fascinated by in your own practice right now?

Gil: The thing is that what's turning me on is that nothing stays that same. What's turning me on is that if I attach myself to any particular idea the dying process has begun. I am willing to suffer the indignities of constant change until death. I'm on that ride. I'm not going to be one of those persons who picks a set of ideas, and then marries them until death do I part, and defends them. I'm willing to constantly have my projects broken down in front of me so that the shells keep it being cracked, and that I can continue to expand as a variable amorphous light, as opposed to a dried stone.

Home play!

I don't know about all of you, but after the holidays I have a bit more adipose tissue then I did when they kicked off... all the more to explore with! Can you notice how you ignore or hate on your adipose tissue? Can you get to know it in a friendlier way? To not look away from it? Embrace it even? Let me know how it goes!

Resources

Gil Hedley- web home of Integral Anatomy Productions and Somanautics Workshops

Gil's book Reconceiving My Body

Numerous dissection videos (viewer discretion is advised) 

Gil Hedley's fuzz speech (including notes on his current thinking about it)

Continuum and Emilie Conrad 

Bonnie Bainbridge Cohen

Thomas Myers

Taking Root to Fly  by Irene Dowd

Robert Schleip

If you liked this episode

You might also like

Tom Myers: Mapping the Anatomy of Connection

Steve Haines: Body Maps and Interoception

Mary Bond: Posture is an Exploration

Tom Myers: Mapping the Anatomy of Connection (LBP 011)

Ask and you shall receive! Many of you have gotten in touch with me to say how much you would like to hear Tom Myers, founder of Anatomy Trains and Kinesis Myofascial Integration, on the podcast. Well here you are! He does not disappoint. This episode is the proverbial kid in in the candy store moment for body nerds...

Tom talks about the history of Anatomy Trains and how he came to chart connections through the fascial fabric, where Newtonian biomechanics fall short and how fractal mathematics might illuminate new understandings of the body, fascia as the 3rd big autoregulatory system,  what Kinesthetic IQ is and why it matters, common misconceptions about fascia, and more. Phew! Lots of good stuff!

GET IT ON ITUNES

GET IT ON STITCHER

GET IT ON LIBSYN

Show notes

Anatomy Trains started as a game.  All of the anatomy books, then as now, were looking at origin and insertion of muscles and how muscles worked by pulling those 2 ends together on the skeleton. That's only one thing muscles do. Much more emphasis in recent research is now being placed on the isometric or stabilizing functions, the eccentric or braking function of  the muscle, and more than that it turns out the muscles are attached to the muscles beside them, which we cut away with our scalpel. That's the work of Huijing and van der Wal [in resources].

My work was to say, "Well, why stop there?" The fascia is continuous with the next muscle, and I wanted to see the connection through the fascial fabric, yet all the anatomy books were written in this origin to insertion way. I started this game suggested to me by an article that James Oschman gave me by Raymond Dart, an anthropologist in South Africa, who was also a student of Alexander Technique.  It was about the trunk and these double spiral arrangements [it's in the resources] and I thought again, "Why stop there?"

With my students, we played a game; If you keep going in a line, how many muscles could you find connected? There were other rules- they had to be fascially connected, they had to be able to transmit force from one to the other without intervening walls of fascia in between, etc, but that game soon was built into a system.

The book Anatomy Trains was really an outlier initially, but it's turned out to be a bestseller in the world of textbooks.

We understand when we have a nerve problem that that nerve is a part of a whole system, and we have to consider the effect on that whole. We understand when we have a hematoma, or some other problem with the circulatory system, that it's going to have systemic effects. Yet if you go to physio or anyone working in this kind of field, and say you have a problem with your Achilles tendon, they are really likely to focus on your Achilles and not see it as a part of the whole system.

So I've put forth this idea that the fascia is the 3rd big auto-regulatory system. The nervous system is an amazing auto-regulatory system, and circulatory system ever since the 1600's has been seen as just that- we add in the lymph and the cerebrospinal fluid and we have an idea of how the fluids work in the body.

After 500 years of anatomy we still don't have this image of the fascia as a whole system. Every time I go to Equinox in NY I see someone on a foam roller rolling out their iliotibial band. It's really of limited value, and it's really quite painful, and if someone could see this as a part of this larger system they might not do it- but the predominating vision in a lot of people's minds is that we think of ourselves as put together like a Ford or a Dell computer. We live in an industrial society, and so we think of ourselves in these terms. But it's a really inadequete view.

There's a lot we don't know about fascia. I've spent 40 years with it and I don't understand it. A couple of the misconceptions:

One from the medical point of view is that you can't move this stuff. Fascia is understood to be fixed, and this is because they did their dissections on cadavers fixed with formaldehyde. But in a real, living human being it is very dynamic.

Another misconception is the idea that it is the saran wrap around the muscles. It is so much more. There is saran wrap and that's called the epimesium, meaning the outside the muscle. However there are structures inside the muscle called the perimesium and endomesium which have different characteristics.

We don't actually work the muscle. The mind doesn't' think of it as training the deltoids or biceps. It thinks in terms of individual neuromotor units, of which there might be a hundred in the biceps. Each of these neuromotor units is wrapped by fascia, called the fascicles.

The idea of a muscle is something that we created because of the way we took apart the body with the blade. If you go after anatomy with a blade you're going to come up with some structures. But now that we can see inside the body, we see that really the body is not organized that way.

I think people are jumping on the bandwagon and saying fascia does all sorts of things, but we really don't know so many things. We don't know how much fo this is neurological change vs. fascial change- and the neurological system and the fascial sustem are so intertwined.

It's very exciting that it's this framework that holds all of our cells. If you think that you start as one cell and proliferate to several trillion cells by the time you are born, and somewhere around 70 trillion cells by the time you are an adult.

So your 70 trillion semi-autonomous cells are coursing around in your body either staying still and doing their job or going around with the blood and doing their job and somehow the whole thing works.

It has to work biomechanically and it has to work at every instant. There is no point at which you can put it up on the shelf. The body is continuously working all the time and it goes through amazing biomechanical changes.

The cells are held together by this amazing system of fibers- by all different forms of mucous and a fibrous network embedded in that mucous. It's an amazingly adaptive system.

Recent work with Dr. Stephen Levin (who pioneered the idea of biotensegrity- in resources) about how Newtonian biomechanics have fallen short. When Einstein came along with his theory of relativity he didn't overturn Newtons laws. Newton's laws still work. They are included in a much bigger picture.

We've been using Newtonian biomechanics for the last 450 years which is basicaly the lever model. If we go back to the biceps, your elbow is a fulcrum and the biceps are the lever force which exert force on your arm. So it talked a lot about vectors, and force couples, etc. Every anatomy book you ever read is all based on that kind of mechanics.

The dynamics of all these cells holding themselves together is much more fluid and is better explained by fractal mathematics, or chaos mathematics; the mathematics of complexity. If you think of things rolling, tumbling, and flowing, it's a lot more like that than like levers.

It doesn't' negate the idea that the elbow is like a lever, but if you actually go in there and look at the body it doesn't explain movement. If you had to describe swinging a baseball bat simply with Newtonian mechanics it's very hard to do. We think of the nerves as these wires, like telephone wires, that snap the muscle on or off, and again that's way too simplistic and industrial a point of view.

Your fascial system is constantly adapting, It adapts in some ways very fast. When you catch a baseball, the synovial fluid in your hand is solid, but the moment you catch the ball, it becomes quite fluid so that you can manipulate the ball.

There's the gel- the mucopolysaccharides or proto-amino-glycans that lubricate things to almost zero friction.  If you have zero friction environment, you have to be holding the body together not one single muscle at a time, but considering the whole system.

So if we imagine the fabric holding it together, the first is under the skin and very movable in any direction, but if you try to tear someone's chest open like you did in Indiana Jones it's very hard to get through the skin without a blade. Under that is the adipose or fat, but under that is the first fabric that really holds us together- the fascia profundus. Then you have the sections inside just like you do in an orange, everything you own inside you is wrapped in fascia.

When you consider that as a  system you begin to see this different idea that bones float in a sea of soft tissue. Your brain doesn't organize movement in terms of parts, it's a response of the whole body [when you move to catch a ball].

Tensegrity is the balance of the body determined by  the tension in the soft tissues. In other words, of you want to re-position the bones you need to address the soft tissue.

Now everyone agrees that no bony manipulation will stay put unless you address the soft tissue, this has completely changed from the viewpoint when he started working in the field.

Why he's working with movement and fitness professionals a great deal these days: If I do wonderful work on people in a session, and they go back to sitting in their same chair in the same way, what I did won't hold. So we need to address changing habit.

Trainers are on the front lines of health care these days, as massage therapists are. People come to them and are asking all kinds of questions. We're really looking at a different approach to healthcare in the next 20 to 30 years as our healthcare system changes- I don't think the system is going to survive all that much longer. What we call the healthcare system is sick-care, not healthcare. And we have  a number of people in our society that need sick-care, they have any number of diseases that bodywork isn't going to cure.

The trainers, the massage therapists, the yoga teachers, they are all on the front lines of healthcare, and people are turning to them for their health-care and this crew needs to be educated more.

Kinesthetic literacy- we have a real idea about what IQ is and how to measure it with tests. With the help of Daniel Goleman and the rise of the feminine in culture we are getting an idea of EQ- emotional intelligence. We really have not defined KQ- physical or kinesthetic intelligence.

In today's society people are no longer required to do physical work. My European friends say an American is someone who drives their SUV around and around the parking lot until they find a parking spot close to the gym.

So we go somewhere to exercise, and that's annoying to me. We should have a life that engages our bodies completely. But we don't. We have energy slaves- things working out there for us in the form of light-switches, and new cars- I don't have to lift the lid of my car anymore, so that's one more way I don't have to use my muscles. And kids are pretty much focused 40 cm away on their screens.

As we move from the Industrial Society to an Electronic Society, we need to define Kinesthetic Literacy, what do kids need to know, what do older people need to know? What are the certain set of movements that they should have to know? Physical education doesn't give an idea of how to be competent inside the body. We need to educate the kids of this generation or we're going to have mental problems because of the physical issues.

We haven't even mapped this out.We don't even know what the topology of movement is.

A lot of the intuitions that we have about people are coming up from our kinesthetic self. Things that we call "hunches" I think are body based.

What is Tom playing with in his own practice? Tom is currently enjoying his sailing season. What he describes as his delight in life- every sense is engaged. I [Tom] wish that for everybody- that you find something that really engages you as a whole.

For his work he is currently really interested in how does a 1 celled ovum grown into a 70 trillion cell adult? [He references the Inner Life of a Cell animation by XVIVO which is in the resources] they have shown the biomechanics inside the cell. All of us a-fascia-nados and a-fascia-nadas are interested in what's happening between the cells that allow the cells to be perfused- I [Tom] want to know how that works, because if we know how that works then we can get every cell in the body into their happy place.

The fascia tugging on cells can actually change how the cells express themselves, change how their genes work, change the epigenetics, determine what gets switched on, this is new business. We can make physiological changes with bodywork. It's not just that you made more space in the ribs, it's that you made more space for the cells to do their work.

Home play!

Go for a walk, run, swim, yoga practice... whatever movement you do where you can get "inside yourself" better, and for the time of that practice- whatever it may be- let go of ideas of yourself as a collection of parts, and see if you can think about yourself as 7o trillion cells that are held together. Cells that are rolling, tumbling, flowing... You don't have to do your best impersonation of an octopus, it's not about changing gross movement patterns, but you can see if this little mental shift changes the experience of your practice.

Resources

Anatomy Trains website

Anatomy Trains book, now in its 3rd edition

Kinesis Myofascial Integration, Tom Myer's school for Structural Integration which holds trainings worldwide

Huijing: Muscle as a Collagen Fiber Reinforced Composite: A Review of Force Transmission In Muscle and Whole Limb

van der Wal: The Architecture of the Connective Tissue in the Musculoskeletal System-An Often Overlooked Functional Parameter as to Proprioception in the the Locomotor Apparatus

Raymond Dart: The Double Spiral Arrangement of the Human Trunk

Dr. Stephen Levin's resources on Biotensegrity

Daniel Goleman Emotional Intelligence

The Inner Life of a Cell- animation of cell biomechanics by XVIVO and for Harvard